Differential modulation of L-type calcium channel subunits by oleate.
نویسندگان
چکیده
Nonesterified fatty acids such as oleate and palmitate acutely potentiate insulin secretion from pancreatic islets in a glucose-dependent manner. In addition, recent studies show that fatty acids elevate intracellular free Ca(2+) and increase voltage-gated Ca(2+) current in mouse beta-cells, although the mechanisms involved are poorly understood. Here we utilized a heterologous system to express subunit-defined voltage-dependent L-type Ca(2+) channels (LTCC) and demonstrate that beta-cell calcium may increase in part from an interaction between fatty acid and specific calcium channel subunits. Distinct functional LTCC were assembled in both COS-7 and HEK-293 cells by expressing either one of the EYFP-tagged L-type alpha(1)-subunits (beta-cell Cav1.3 or lung Cav1.2) and ERFP-tagged islet beta-subunits (ibeta(2a) or ibeta(3)). In COS-7 cells, elevations in intracellular Ca(2+) mediated by LTCC were enhanced by an oleate-BSA complex. To extend these findings, Ca(2+) current was measured in LTCC-expressing HEK-293 cells that revealed an increase in peak Ca(2+) current within 2 min after addition of the oleate complex, with maximal potentiation occurring at voltages <0 mV. Both Cav1.3 and Cav1.2 were modulated by oleate, and the presence of different auxiliary beta-subunits resulted in differential augmentation. The potentiating effect of oleate on Cav1.2 was abolished by the pretreatment of cells with triacsin C, suggesting that long-chain CoA synthesis is necessary for Ca(2+) channel modulation. These results show for the first time that two L-type Ca(2+) channels expressed in beta-cells (Cav1.3 and Cav1.2) appear to be targeted by nonesterified fatty acids. This effect may account in part for the acute potentiation of glucose-dependent insulin secretion by fatty acids.
منابع مشابه
Mechanism of Cav1.2 channel modulation by the amino terminus of cardiac 2-subunits
L-type calcium channels are composed of a pore, 1c (CaV1.2), and accessory and 2 subunits. The -subunit core structure was recently resolved at high resolution, providing important information on many functional aspects of channel modulation. In this study we reveal differential novel effects of five 2-subunits isoforms expressed in human heart ( 2a-e) on the single L-type calcium channel curre...
متن کاملThe Role of Auxiliary Subunits for the Functional Diversity of Voltage-Gated Calcium Channels
Voltage-gated calcium channels (VGCCs) represent the sole mechanism to convert membrane depolarization into cellular functions like secretion, contraction, or gene regulation. VGCCs consist of a pore-forming α(1) subunit and several auxiliary channel subunits. These subunits come in multiple isoforms and splice-variants giving rise to a stunning molecular diversity of possible subunit combinati...
متن کاملIncreased Expression of the Auxiliary β2-subunit of Ventricular L-type Ca2+ Channels Leads to Single-Channel Activity Characteristic of Heart Failure
BACKGROUND Increased activity of single ventricular L-type Ca(2+)-channels (L-VDCC) is a hallmark in human heart failure. Recent findings suggest differential modulation by several auxiliary beta-subunits as a possible explanation. METHODS AND RESULTS By molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by altered expression...
متن کاملSubunit-dependent modulation of recombinant L-type calcium channels. Molecular basis for dihydropyridine tissue selectivity.
At least four calcium channel subtypes (P, T, N, and L) have now been classified on the basis of their biophysical and/or pharmacological properties. L-type channels, a channel family particularly important to physiological function of the cardiovascular system, are identified by their slow voltage- and calcium-dependent inactivation as well as their sensitivity to dihydropyridine (DHP) calcium...
متن کاملCalcium Channel b Subunit Promotes Voltage-Dependent Modulation of a1B by Gbg
Voltage-dependent calcium channels (VDCCs) are heteromultimers composed of a pore-forming a1 subunit and auxiliary subunits, including the intracellular b subunit, which has a strong influence on the channel properties. Voltage-dependent inhibitory modulation of neuronal VDCCs occurs primarily by activation of G-proteins and elevation of the free Gbg dimer concentration. Here we have examined t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 294 6 شماره
صفحات -
تاریخ انتشار 2008